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PfSMAD4 plays a role in biomineralization
and can transduce bone morphogenetic
protein-2 signals in the pearl oyster
Pinctada fucata
Mi Zhao1,2†, Yu Shi1†, Maoxian He1*, Xiande Huang1 and Qi Wang1,2

Abstract

Background: Mollusca is the second largest phylum in nature. The shell of molluscs is a remarkable example of a
natural composite biomaterial. Biomineralization and how it affects mollusks is a popular research topic. The BMP-2
signaling pathway plays a canonical role in biomineralization. SMAD4 is an intracellular transmitter in the BMP signaling
pathway in mammals, and some genomic data show SMAD4’s involvment in BMP signaling in invertbrates, but
whether SMAD4 plays a conservative role in pearl oyster, Pinctada fucata, still need to be tested.

Results: In this study, we identified a SMAD4 gene (hereafter designated PfSMAD4) in pearl oyster Pinctada fucata.
Bioinformatics analysis of PfSMAD4 showed high identity with its orthologs. PfSMAD4 was located in the cytoplasm in
immunofluorescence assays and analyses of PfSMAD4 mRNA in tissues and developmental stages showed high
expression in ovaries and D-shaped larvae. An RNA interference experiment, performed by PfSMAD4 double-stranded
RNA (dsRNA) injection, demonstrated inhibition not only of nacre growth but also organic sheet formation
with a decrease in PfSMAD4 expression. A knockdown experiment using PfBMP2 dsRNA showed decreased
PfBMP2 and PfSMAD4 mRNA and irregular crystallization of the nacreous layer using scanning electron microscopy. In
co-transfection experiments, PfBMP2-transactivated reporter constructs contained PfSMAD4 promoter sequences.

Conclusions: Our results suggest that PfSMAD4 plays a role in biomineralization and can transduce BMP signals in P.
fucata. Our data provides important clues about the molecular mechanisms that regulate biomineralization in pearl
oyster.
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Background
Pearl oyster, Pinctada fucata, is distributed over the
southern coast of China and is the most popular farming
shellfish for pearl production. The plain outer surface of
pearl oyster shells conceal the lustrous beauty of the
mother-of-pearl lining ‘nacre’. It combines a high mechan-
ical strength similar to many ceramics, with elasticity,
reducing the brittleness of the shell [1, 2]. The nacreous
layer of molluskan shells, which consist of highly oriented

aragonitic crystals and an organic matrix (including chitin
and proteins), is a product of biomineralization [3–5].
Bone morphogenic proteins (BMP) are the largest sub-

group in the transforming growth factor-beta (TGF-β)
superfamily [6] and play a canonical role in biominerali-
zation [7, 8]. In the BMP family, BMP-2 has one of the
strongest signals for stimulating biomineralization.
BMP-2 stimulates bone or tooth mineralization via the
canonical BMP pathway [9–11]; SMAD 1, 5, and pre-
sumably 8, propagate BMP signals and are structurally
related to Mad that acts downstream of Dpp, a BMP
homolog in Drosophila [12]. SMAD4 is the only Co-
SMAD in mammals [13], and Medea acts as a common
SMAD in flies [14]. In the cytoplasm, receptor-regulated
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SMADs (R-SMADs) are directly phosphorylated by
BMP-like ligands and then associate with common
SMADs (Co-SMADs) that are essential to distinct
signaling pathways. The heteromeric complexes are
translocated to the nucleus, where they regulate tran-
scription of target genes in concert with other tran-
scription factors [15, 16].

SMADs have a domain structure consisting of highly
conserved amino (NH2)- and (COOH)-terminal regions,
referred to as Mad homology 1 (MH1) and MH2 domains
[17, 18], respectively. The MH1 domain can bind to spe-
cific DNA sequences in the nucleus and the MH2 do-
main is responsible for interaction with other SMAD
proteins [19].

Fig. 1 Bioinformatics analysis of PfSMAD4. Phylogenetic analysis of the SMAD4 family. The phylogenetic tree was constructed by MEGA 5.0 using
the neighbor-joining method with 1000 bootstrap replicates. The number shown at each branch indicates the bootstrap value (%). Percentages refer
to identity values. The left frame showed the identities of the whole PfSMAD4 sequence with its orthologs. The middle frame: MH1 domain;
the right frame: MH2 domain. These SMAD4 amino acid sequences using in the alignment and phylogenetic analysis are from HsSMAD4 (Homo sapiens,
AAH02379.1), MmSMAD4-a (Mus musculus, EDL09559.1), MmSMAD4-b (Mus musculus, EDL09560.1), MmSMAD4-c (Mus musculus, EDL09561.1), ScSMAD4-1
(Serinus canaria, XP_009098382.1), ScSMAD4-2 (Serinus canaria, XP_009098384.1), CmSMAD4-a (Chelonia mydas, XP_007063905.1), DrSMAD4-a
(Danio rerio, NP_001116172.1), XlSMAD4-1 (Xenopus laevis, NP_001090536.1), XlSMAD4-2 (Xenopus laevis, NP_001084387.1), BfSMAD4 (Branchiostoma
floridae, AEU03847.1), SkSMAD4 (Saccoglossus kowalevskii, XP_002740765.2), SpSMAD4 (Strongylocentrotus purpuratus, XP_780740.3), CiSMAD4 (Ciona
intestinalis, NP_001071944.1), NvSMAD4 (Nematostella vectensis, EDO31382.1), AaSMAD1/5 (Aedes aegypti, XP_001664103.1), DmMedea-a (Drosophila
melanogaster, AAF57172.1), DmMedea-b (Drosophila melanogaster, AAN14277.1), DmMedea-c (Drosophila melanogaster, AAN14278.2), CgSMAD4
(Crassostrea gigas, EKC24133.1), PfSMAD4 (Pinctada fucata, AGY49100.1), SmSMAD4 (Schistosoma mansoni, XP_002574840.1), HrSMAD4 (Helobdella
robusta, ESN93792.1), MlSMAD1/5 (Mnemiopsis leidyi, AEP16392.1), AsSMAD4 (Ascaris suum, ERG79533.1), TaSMAD4 (Trichoplax adhaerens,
XP_002116214.1) and AqSMAD4 (Amphimedon queenslandica, XP_003388571.1)

Zhao et al. BMC Developmental Biology  (2016) 16:9 Page 2 of 9



Accumulating examples show that BMP orthologs
play important roles in biomineralization in mollusca
[20–25]. In previous studies, the BMP-2 gene of P.
fucata has been identified and defined as PfBMP2 [26].
Further studies showed that a purified recombinant 10-
kD mature fragment of PfBMP2 could induce osteo-
genic differentiation in C3H10T1/2 [27], demonstrating
that PfBMP2 is conserved in terms of its function in
the formation of hard tissuePreliminary studies of
SMAD4 genes in Crassostrea gigas and Lingula anatina
show their potential involvement in shell formation
[28, 29], and Luo et al. showed SMAD4’s involvment
in BMP-2 signaling based on Mollusca and brachiopod

genomes [29]. Although a SMAD4 homolog was found in
P. fucata (designated PfSMAD4), whether the SMAD4
protein has the same function as their homologs still
needs to be tested. In this study, we investigated if
PfSMAD4 played a role in biomineralization. Additionally,
we identified that PfBMP2 could activate the promoter of
PfSMAD4, and PfSMAD4 expression decreased after
interfering with the expression of PfBMP2.

Results
Sequence analysis of PfSMAD4
Phylogenetic analysis showed that the PfSMAD4 sequence
was most closely related to that of Crassostrea gigas,

Fig. 2 Expression of PfSMAD4 mRNA in various tissues (a) and at the developmental stages of Pinctada fucata (b). The mRNA levels were
quantified by qPCR. The results are expressed as fold-change. Each bar represents the mean ± S.E.M (n = 3)

Fig. 3 The sub-cellular localization of PfSMAD4 in HEK293T cells. Indirect immunofluorescence staining of PfSMAD4 using mouse anti-myc
antibody and FITC-conjugated goat anti-mouse antibodies. Preimmune mice serum was used as control (upper row), and blue images show the
location of the nucleus stained by DAPI
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Fig. 4 Knockdown of the PfSMAD4 gene by means of RNAi. a The expression levels of PfSMAD4 mRNA in the mantle were determined with
qPCR 7 days after injection. Five oysters were used in each experiment. Statistically significant differences were analyzed by means of one-
way analysis of variance. Asterisk indicates a significant reduction (P < 0.05) as compared with PBS-injected oysters. b and c SEM images of the surface
of the nacreous layer of the oysters injected with PBS and 80 μg of PfSMAD4 dsRNA respectively

Fig. 5 Knockdown of the PfBMP2 gene by means of RNAi. a The expression levels of PfBMP2 and PfSMAD4 mRNA in the mantle were determined
with qPCR 7 days after injection. Five oysters were used in each experiment. Statistically significant differences were analyzed by means of one-
way analysis of variance. Asterisk indicates a significant reduction (P< 0.05) as compared with PBS-injected oysters. b and c SEM images of the surface of
the nacreous layer of the oysters injected with PBS and 80 μg of PfBMP dsRNA × 1000 magnification, respectively
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which also belongs to bivalves. The relationships displayed
in the phylogenic tree are generally in agreement with
those of traditional taxonomy. Homology analysis revealed
that the whole PfSMAD4 sequence shared 27.8–77.5 %
identity to other known SMAD4 sequences, while the
MH1 domain shared 62–93.7 % identity and MH2 domain
shared 56.1–96.8 % (Fig. 1).

PfSMAD4 expression in tissues and developmental stages
To investigate the expression pattern of PfSMAD4
among various tissues and developmental stages in
pearl oyster, qPCR analysis was performed with gene
specific primers. The expression of PfSMAD4 was abun-
dant in all tissues examined, including ovary, testis, gill,
mantle, heart, and digestive. PfSMAD4 was expressed at
particularly high levels in ovaries (Fig. 2a). High expres-
sion levels were also observed in all developmental
stages investigated, particularly in the D-shaped larvae
(Fig. 2b).

PfSMAD4 is localized to the cytoplasm
Subcellular localization of PfSMAD4 was investigated by
immunofluorescence assays. The results indicated that
PfSMAD4 was located in the cytoplasm (Fig. 3 lower
row). No fluorescence signal was detected in the control
cells detected by the preimmune mouse serum (Fig. 3,
upper row). In an uninduced state, the SMADs are
retained in the cytoplasm [30–32]. The immunofluores-
cence assays showed PfSMAD4 was seen in the cyto-
plasm of the cells; this tallied with the views above.

Knockdown of PfSMAD4 leads to disorder of the nacreous
layer
We tested the function of PfSMAD4 in biomineraliza-
tion using RNAi technology. The controls were PBS and
dsRNA-GFP; GFP was not expressed in P. fucata. The
PfSMAD4 dsRNA was injected into P. fucata, and qPCR
was used to measure expression levels of the PfSMAD4
gene 7 days after dsRNA injection. The PfSMAD4 ex-
pression levels in the PfSMAD4-dsRNA injected group

were suppressed by approximately 70 %, compared with
the PBS group (Fig. 4a). We also observed the inner sur-
face structure of the shells. The surfaces of the shells in
the control groups (PBS and dsRNA-GFP) had a normal
well-defined microstructure (Fig. 4b). The shell surface
in PfSMAD4 dsRNA injected groups, stopped regular
crystallization and formed a mass without clear bound-
aries (Fig. 4c).

Knockdown of PfBMP2 leads to reduced PfSMAD4
expression
We then tested whether PfSMAD4 transduces PfBMP2
signals using RNAi technology on the PfBMP2 gene.
The PfBMP2 dsRNA was injected into the muscle of P.
fucata, and qPCR was used to measure expression levels
of the PfBMP2 and PfSMAD4 genes. PfBMP2 and
PfSMAD4 expression levels of the 80 μg-dsRNA injected
groups were suppressed by approximately 70 % and
50 %, respectively, compared with the PBS or dsRNA-
GFP injected groups (Fig. 5a). Incidentally, we also
observed the inner surface structure of the shells after
dsRNA injection using SEM. The surfaces of shells in
the control groups (PBS and dsRNA-GFP) were normal
(Fig. 5b). In the PfBMP2 dsRNA injected groups, the
growth of the nacre tablets was disrupted (Fig. 5c), re-
sembling the nacre pattern after PfSMAD4 interference.
These results further reinforce the concept that BMP2
has a function in pearl oyster biomineralization. On the
other hand, this tight correlation between the expression
of PfBMP2 and PfSMAD4 at the molecular level, and a
similar pattern after knockdown, strongly suggested that
PfBMP2 was the upstream regulation gene of PfSMAD4.

PfBMP2 activates PfSMAD4-specific reporter genes
A series of 5'-deletion mutants were prepared to deter-
mine whether the PfSMAD4 promoter might harbor cis-
regulatory DNA sequences critical for transactivation by
PfBMP2 (Fig. 6a, left graph). Each deletion mutant was
co-transfected into HEK293T cells along with either
pCDNA3.1-BMP2 or pCDNA3.1.

Fig. 6 PfBMP2 activates PfSMAD4 promoter in HEK293T cells. Left graph: indicated segments from the 5'-flanking region of the PfSMAD4 gene
linked to pGL3 basic encoding luciferase. Right graph: the synthetic PfSMAD4-Luc reporter was transfected into HEK293T cells in the
absence (vector) or presence of expression vectors for PfBMP2. Forty-eight hours after transfection, whole cell lysates were prepared and analyzed for
luciferase activity. The bars indicate relative luciferase activity. Normalized luciferase activities are shown as the mean ± S.E.M (n= 3). Statistically
significant differences were analyzed by means of the Student’s t-test. Asterisk indicates a significant reduction (P < 0.05)
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S278Luc is the basic promoter of the PfSMAD4 pro-
moter. Deletions of the region from −778 to −653 resulted
in 40-fold increases in promoter activity, suggesting that
these regions function as silencers in controlling PfSMAD4
gene transactivation (Fig. 6, right graph). Over-expression
of pCDNA3.1 vector had no obvious effect on the activities
of S278Luc, S778Luc and S1065Luc, but when transfected
with pCDNA3.1-BMP2, their activity significantly in-
creased (Fig. 6, right graph). The results presented in this
report show that PfBMP2, when expressed in transiently
transfected mammalian cells, can activate transcription
from the PfSMAD4 promoter and cis-regulatory DNA
sequences may exist in the region from −202 to −278.

Discussion
PfSMAD4 plays a role in biomineralization
The PfSMAD4 gene shows high expression in mantle
and D-shaped larvae stages. The mantle tissue stage cor-
responds to shell formation and the D-shaped larval
stage is a period in which mineral materials largely accu-
mulate. These results may suggest that PfSMAD4 exerts
a function in shell formation not only in the adult but
also during the embryonic stage. High expression level
of the SMAD4 gene reported in the shell fields of
embryos at different stages in Crassostrea gigas [29] is
consistent with our study. The high expression in the ovary
may indicate that PfSMAD4 functions in reproduction and
development.
It is well known that TGF-β/BMP signaling play

important roles in osteoblast differentiation and bone
formation [33]. As a common mediator Smad of TGF-β
and BMP signaling, SMAD4 is also required for main-
taining normal bone homeostasis. Conditional deletion
of Smad4 in osteoblasts leads to lower bone mineral
density, decreased bone volume, decreased bone forma-
tion rate, and a reduced number of osteoblasts [34]. Mu-
tations at a single codon in Mad homology 2 domain of
SMAD4 can cause Myhre syndrome, which is a develop-
mental disorder characterized by a shortness in stature,
hands, feet, and so on [35]. Interference of PfSMAD4
caused nacre disorder showed that PfSMAD4 played a
role in biomineralization in P. fucata.

Conserved BMP2/SMAD4 signaling pathway in P. fucata
In recent years, many alternatively spliced SMAD4 variants
have been found in many species [36–39]. Most isoforms
lack one or more in-frame exons, compared with the full-
length transcripts, and the activities of their encoded
proteins depends on which region of the SMAD protein is
missing or affected [40]. Comparison of the deduced amino
acid sequence of PfSMAD4 with SMAD4 from other or-
ganisms showed that PfSMAD4 has an overall 27.8–77.5 %
identity with known sequences. The MH1 domain and
MH2 domain showed higher identities, ranging from 62 to

93.7 % and 56.1–96.8 %, respectively. The high identities of
the MH1 and MH2 domains of SMADs imply a highly
conserved structure, further suggesting a conservation in
function. The SMAD4 sequence is conserved in eukaryotes
from sponges to mammals and the PfSMAD4 has a high
similarity to vertebrate SMAD4, confirming the hypothesis
by Westbroek et al. [41] that human and pearl oyster may
have homogeneous signal transmitters in biomineralization.
Many developmental mechanisms have shown to be

conserved throughout evolution [42]. Gabrielle et al.
[43] demonstrated that the BMP signaling pathway was
in place prior to the divergence in the line of Cnidaria to
the higher Metazoa, and that it has been substantially
conservative during evolution. Based on Mollusca and
brachiopod genomes, BMP-SMAD signaling pathway
showed its conservation in verterbrates [29]. The con-
served SMAD4 was identified in many invertebrates like
fly [44], ascidian [45] and amphioxus [46], demonstrat-
ing a conserved function in the BMP signalling pathway.
RNAi technology has been applied in investigating the
function of specific genes [47] and it has been used
successfully in Mollusca [48–51]. As a potential signal
transducing molecule, SMAD4 protein is expected to be
co-expressed with the BMP signaling molecule. The
interference of PfBMP2 mRNA led to reduced PfSMAD4
expression, indicating that PfSMAD4 could transduce a
BMP2 signaling pathway. Moreover, the nacre pattern
after PfSMAD4 interference bore similar resemblance to
that after PfBMP2 interference, highlighting an essential
role of PfSMAD4 in mediating the BMP signaling path-
way in P. fucata. These results are reinforced by our
luciferase assays showing PfBMP2 could activate the
PfSMAD4 promoter.

Conclusions
Our results suggest that PfSMAD4 plays a role in bio-
mineralization and can transduce BMP signals in P.
fucata. Our data provide important clues about the
molecular mechanisms that regulate biomineralization
in pearl oyster.

Methods
Bioinformatics analysis of PfSMAD4
PfSMAD4 sequence was obtained from GenBank, acces-
sion number AGY49100.1. Multiple sequence align-
ments of the deduced amino acids were performed using
ClustalX2 [52] and protein domains were predicted by
ExPASy translate tool (http://web.expasy.org/translate/).
A neighbor-joining phylogenetic tree was constructed
using the MEGA5.0 package [53]. Reliability of branching
was tested using bootstrap re-sampling with 1000
pseudo-replicates.
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Cloning the 5' flanking region of the PfSMAD4 gene
GenomeWalker libraries were constructed using a Geno-
meWalker Universal kit according to manufacturer’s in-
structions (Clontech, Mountain View, CA, USA). Pearl
oyster genomic DNA (2.5–5 μg) in each reaction was
digested at 37 °C overnight with a restriction enzyme.
Four enzymes (DraI, EcoRV, PvuII and StuI) were used
in four reactions, respectively. After purification with
phenol and chloroform extraction and ethanol precipita-
tion, the digested DNA was ligated to GenomeWalker
adapters (5'-GTAATACGACTCACTATAGGGCACGCG
TGGTCGACGGCCCGGGCTGGT-3') at 16 °C overnight.
Primers for PCR-based DNA walking in GenomeWalker
libraries were gene-specific: PfSMAD4-specific primer 1
(5'-ACCTGCCATCCAGAGTTCTT-3') and nested pri-
mer 2 (5'-CCAGACTTTCTATGGCTCGT-3'). The longest
fragment from the four genomic libraries was gel-purified,
and subcloned for sequencing. According to the sequence,
the nested primer 3 (5'-GGAGGTCAATTCTCGGAA
AC-3') was designed. The second round PCR used
nested primer 2 and nested primer 3. From two
rounds of PCR, we got a 2524 bp 5' UTR-intron and
a 1065 bp 5' flanking sequence [GenBank:KJ530991].

RNA isolation and quantitative PCR analysis
P. fucata samples were isolated using TRIzol (Invitrogen,
Carlsbad, CA, USA). Total RNA (1 μg) was treated with
DNase I (Fermentas, Shenzhen, China) to prevent DNA
contamination and subsequently reverse transcribed with
Toyobo RT-PCR kit (Toyobo, Osaka, Japan). Quantitative
PCR (qPCR) primers for tissue and developmental stage
distribution were as follows: PfSAMD4, 5'- ATGCACCCG
GTAGCTCTA-3' and 5'-TCACCGACTCCGAAACAG
G-3'; β-actin, 5'- TGGTATGGGACAGAAGGAC-3' and
5'- GACAATGCCGTGCTCAAT -3'.
qPCR was carried out using a LightCycler 480 Real-

Time PCR System (Roche, Basel, Switzerland), with
SYBR green fluorescent dye, according to the manufac-
turer’s protocol (Toyobo). qPCR conditions were as
follows: denaturation at 94 °C for 1 min, followed by
40 cycles at 94 °C for 15 s, 55 °C for 15 s and 72 °C for
60 s. We analyzed the relative gene expression using the
typical cycle threshold (Ct) method (2-ΔΔCt method).

Plasmid construction
The cDNA encoding the full-length PfBMP2 was ampli-
fied with sequence specific primers, 5'-CGGGGTACCAT
GATTTACGGATTTGGACAT-3' containing a KpnI re-
striction site, and 5' -CCGCTCGAGCCGACATCCG-
CATCCTTC-3' containing an XhoI restriction site. After
double digestion with KpnI and XhoI, the cDNA was
cloned in-frame into the KpnI/XhoI sites of pcDNA3.1/
myc-His (A) vector (Invitrogen). The construct was veri-
fied by sequencing. The pCDNA3.1-PfSMAD4 was

constructed using the same strategy as above. Spe-
cific primers for PfSMAD4: F, 5'- CGGGGTACCA
TGACGACACAAGCACCAACG-3' (KpnI restriction
site is underscored) and R, 5'-CCGCTCGAGGCC-
TAGGAAGAATCCTCT-3’ (XhoI restriction site is
underscored).
A 1065 bp PfSMAD4 promoter fragment was subcloned

into the KpnI and BglII sites of the pGL3-basic luciferase
reporter vector (Promega, Madison, WI, USA) to generate
S1065Luc. The fragments of the PfSMAD4 gene between
S778Luc, S563Luc, S278Luc, S202Luc and S118Luc were
amplified by PCR using S1065Luc as a template (tran-
scriptional initiation site was defined as +1).

Cell culture, transfection
The 293 T human kidney cell line (HEK293T) was cul-
tured at 37 °C in a humidified atmosphere of 5 % CO2

using DMEM (Gibco, Grand Island, NY, USA) supple-
mented with 10 % FBS (Gibco), 100 IU/ml penicillin and
100 μg/ml streptomycin (Gibco). The cultures were split
every 2 to 3 days. Lipofectamine 2000 (Invitrogen) was
used for the DNA transfections according to the manu-
facturer’s protocol.

PfSMAD4 distribution in P. fucata
Adult pearl oysters (shell length 4.5–5.5 cm) were ob-
tained from Daya Bay (China Marine Biology Research
Station, South China Sea Institute of Oceanology, the
Chinese Academy of Sciences) in Shenzhen, China. They
were acclimated in indoor cement ponds, at ambient
seawater temperature for 1 week, before the experiment.
Tissue expression profiles of PfSMAD4 were analyzed in
ovaries, testes, gills, adductor muscles, mantles, hearts,
and digestive glands. Each tissue was dissected from
three oysters. Developmental stage expression profiles of
PfSMAD4 were analyzed in fertilized eggs, 2–4 cell stage,
blastocysts, the trochophore, D-shaped larvae, umbo lar-
vae, eye-spot larvae, spats and juveniles. β-actin was
expressed stably in all tested tissues and developmental
stages. Three repetitions of the reaction were performed.

Subcellular localization
Subcellular localization of PfSMAD4 was performed by
immunofluorescence assays. The HEK293T cells were
seeded onto cover slips (10 mm × 10 mm) in a 12-well
plate. After transfection for 48 h, the HEK293T cells
were fixed with 4 % paraformaldehyde and then the cov-
erslips were blocked using 2 % bovine serum albumin at
room temperature for 30 min. Cells were incubated ei-
ther with anti-myc antibody (1:60) or preimmune mouse
serum (1:60) for 1 h, rinsed with PBS three times for
10 min and then incubated with FITC-conjugated goat
anti-mouse antibodies (Pierce, Rockford, IL, USA) for a
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further hour. Finally, cells were stained with DAPI
(1 mg/ml) and observed under fluorescence microscopy.

RNAi experiments
RNA interference (RNAi) was performed as described in
Suzuki et al. [48], with some modifications. The primers
used for generating PfBMP2 and PfSMAD4 dsRNA were
RBMP2F:GCGTAATACGACTCACTATAGGGAGAC
ATCCCGCAGTATTAAAGTGG, RBMP2R:GCGTAA-
TACGACTCACTATAGGGAGACCGACATCCGCAT
CCTTCAAC; RSMAD4F:GCGTAATACGACTCACT
ATAGGGAGATTATGCCAGGATTTGGAGAT; RSM
AD4R:GCGTAATACGACTCACTATAGGGAGAGAG
GCTTGAGACTGAGGAG. The T7 promoter sequence
is bold. For GFP, pEGFP-C1 (Clontech) was used as the
template. A RiboMAX Large Scale RNA Production Sys-
tem (T7) kit (Promega) was used to synthesize and purify
the dsRNA. RNase-free DNase I (TaKaRa, Otsu, Japan)
was used to digest the template DNA. The PfBMP2 dsRNA
and PfSMAD4 dsRNA were diluted to 80 μg/100 μl using
PBS, and 100 μl solutions were injected into pearl oyster
adductors. PBS and dsRNA-GFP were used as controls.
Total RNA from the mantle tissue of each oyster was ex-
tracted 7 days after injection and used to synthesize the
first strand cDNA as described above. qPCR was used to
quantify the expression levels of PfBMP2 and PfSMAD4,
where β-actin was used as an internal reference. The qPCR
primers that were designed for PfSMAD4 and β-actin were
the same sequences as in the distribution experiments
above. The shell of each oyster was thoroughly washed
with Milli-Q water and air-dried. It was then cut into
pieces and mounted on the scanner with the inner nac-
reous surface face-up, sputter-coated with 10 nm-thick
gold, and analyzed using scanning electron microscopy
(SEM, S-3400 N, Hitachi, Tokyo, Japan).

Luciferase assays
HEK293T cells (1.5 × 105 cells/well) were seeded onto
48-well plates. Cells were transfected with the pGL3
reporter gene in the absence or presence of PfBMP2 ex-
pression vectors. The total amount of DNA (1.0 μg) was
kept constant with empty vectors. For normalization of
transfection efficiencies, 0.1 μg of Renilla (sea pansy) lu-
ciferase expression plasmid (pRL-TK, Promega) was in-
cluded in the transfection experiments. Transfected cells
were lysed and subjected to luciferase assays using lucif-
erin substrate (Promega) following the manufacturer's
instructions. The assays were performed in triplicates.

Statistical analysis
Data were analyzed by one-way analysis of variance
(ANOVA) with default parameters or the Student’s t-test
to identify differences between groups. Differences were

considered statistically significant when P values were
lower than 0.05.
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