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Cathepsin B inhibitor improves
developmental competency and
cryo-tolerance of in vitro ovine embryos
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Abstract

Background: Cathepsin B is a lysosomal cysteine protease involved in apoptosis and oocytes which have lower
developmental competence show higher expression of Cathepsin B. Furthermore, expression of Cathepsin B show a
decreasing trend from oocyte toward blastocyst stage.

Results: Present study assessed the effect of cathepsin B inhibitor, E-64, on developmental competency and cryo-
survival of pre-implantation ovine IVF derived embryos. Cathepsin B inhibitor was added during day 3 to 8 of
development. One μM E-64 was defined as the optimal concentration required for improving blastocyst rate. This
concentration also reduced DNA fragmentation and BAX as apoptotic markers while increasing total cell number
per blastocyst and improving anti-apoptotic marker, the BCL2. We further showed that addition of 1.0 μM of E-64
during day 3 to 8 of development improved re-expansion and hatching rates of blastocysts post vitrification. E-64
also reduced rate of DNA fragmentation and BAX expression and increased total cell number per blastocyst and
BCL2 expression post vitrification. However, addition of E-64 post vitrification reduced the hatching rate.

Conclusion: Therefore, it can be concluded that inhibition of cathepsin B in IVC, not only improves quality and
quantity of blastocysts but also improves the cryo-survival of in vitro derived blastocysts.
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Background
Assisted reproductive technologies, such as in vitro
fertilization (IVF) and intra-cytoplasmic sperm injection
(ICSI), not only have transformed treatment of human
infertility but also have had significant impact on farm
animal reproduction and productivity. Among these
techniques, embryos vitrification has progressed to
become a useful adjunct technique, allowing storage of
excess embryos for future use in human and animal
embryo transfer programs. Despite intense research
efforts and progress in field of vitrification, significant
observable morphological and biochemical alterations
are associated with vitrification. These alterations may
lead to blastomere death and, eventually loss of embryo

viability that are attributed to type and concentration of
cryoprotectants [1], freezing protocol [2, 3], species,
genotype, developmental stage and type of embryo
[4, 5]. In this regard, some researchers have shown
that the presence of dead cells is a common physio-
logical finding in mammalian pre-implantation devel-
opment and the number of dead cells is increased by
vitrification [6].
Cell death in embryos has been mainly associated

with programmed cell death or apoptosis [7] and is
considered as potential cellular response to subopti-
mal developmental conditions and stress, such as
vitrification [8, 9]. Numerous phenotypic phenomena
including plasma-membrane blebbing, cell shrinkage,
nuclear fragmentation, chromatin compaction, and
chromosomal DNA fragmentation are associated with
apoptosis [10]. Considerable researches have corre-
lated these phenomena with low potential of embryos
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to reach blastocyst stage [11]. Therefore, improvement
of culture media by different supplements to avoid
apoptosis, is indispensable for production of good
quality embryos in vitro.
Recent studies have shown that supplementation of

culture medium with Rho-associated protein kinase in-
hibitor (ROCK inhibitor) [12], proteasome inhibitor [13],
and antioxidants such as β-mercaptoethanol [14] can
enhance and improve survival and quality of embryos
produced in vitro.
Cathepsins are lysosomal cysteine proteases that play a

crucial role in degradation of intracellular proteins in
lysosomes [15]. They are also involved in induction of
apoptosis through activating initiator caspases [16].
Indeed, it has been reported that sub-optimal pH and in
vitro stressors can lead to secretion of cathepsins from
lysosomes [17]. In this regard, cathepsin inhibitor (E-64)
supplementation may overcome in vitro induced apop-
tosis and improve in vitro embryo development.
Inhibition of cathepsins improves in vitro developmen-

tal competency of embryos [18–25]. However, to our
knowledge there is no report on the effect of cathepsin
inhibitors on developmental competency of vitrified
embryos. Therefore, aim of the current study was to
assess the effect of culture supplementation with E-64, a
cathepsin B inhibitor, on developmental competence,
apoptosis and cryo-survival of in vitro produced ovine
embryos.

Methods
Design of study
Experiment 1
To select the optimal concentration of E-64, on day 3 of
culture during exchange of medium, embryos were ran-
domly allocated to different concentrations (0.0, 0.1, 1.0,
10 μM) of E-64. Embryos were cultured in these concen-
trations of E-64 for up to 6 days. Percentage of morula,
and blastocyst formed were determined on day 7–8 in
four replicates.

Experiment 2
Following determination of optimal concentration of E-
64, expanded blastocysts obtained from in vitro culture
of embryos in the presence (IVC+) or absence (IVC−) of
1 μM of E-64 were vitrified and warmed. Vitrified/
warmed blastocysts, here referred to as post warming
(PW), derived from the after-mentioned groups (IVC+ or
IVC−) were then randomly divided and cultured for 24 h
in presence (IVC−/PW+, IVC+/ PW+) or absence (IVC+/
PW−, IVC−/PW−) of E-64. Cryo-survival (defined as rate
of re-expansion) and hatching rates were determined
and compared between groups. Finally, hatched blasto-
cysts derived from each experimental group were used
for mRNA analyses (3 replicates and minimum number

of examined blastocysts in each replicate was 10), deter-
mination of cell number (3 replicates and minimum
number of examined blastocysts in each replicate was
eight) and assessment of DNA fragmentation by TUNEL
assay (7 replicates and minimum number of examined
blastocysts in each replicate was sixteen).

Materials
Unless otherwise specified, all chemicals and media were
obtained from Sigma Chemical Co. (St. Louis, MO,
USA) and Gibco (Grand Island, NY, USA), respectively.

In vitro embryo production
The procedure used for production of ovine embryos
was according to Moulavi et al. [26]. Ovaries were
obtained from a local abattoir and were transported to
the laboratory in saline (15 °C–20 °C) and stored for
additional 12 h at 15 C. COCs (cumulus-oocyte com-
plexes) were isolated from 2 to 6 mm antral follicles
with the aid of 20-G needles. Subsequently, they were
washed with Hepes-supplemented tissue culture
medium- 199 (HTCM199) + 10% FBS (fetal bovine
serum). COCs with more than three layers of cumulus
cells and homogenous cytoplasm were selected. Finally,
10 washed and selected COCs were cultured in 50 μl
maturation medium [(MM: TCM199 + 10% FBS with
10 μg/ml FSH (follicle-stimulating hormone),10 μg/ml
LH (luteinizing hormone), 1 μg/ml 17-beta estradiol,
0.1 mM cysteamine,10 ng/ml EGF (epidermal growth
factor) and 100 ng/ml IGF1(insulin-like growth factor 1)]
under mineral oil for 22–24 h at 38.5 °C, 5% CO2, in
humidified air.
For in vitro fertilization (IVF), 100 μl of fresh sperm

from a ram with proven fertility were kept under
Tyrode’s albumin lactate pyruvate medium in 5% CO2,
38.5 °C, and humidified air for up to 45 min to allow
motile sperm to swim up. After swim up, insemination
was carried out by adding 5 × 103 sperm/ matured
COCs in fertilization medium containing NaCl 114 mM,
KCl 3.15 mM, NaH2PO4, 0.39 mM, Na-lactate 13.3 mM,
CaCl2 2 mM, MgCl2 0.5 mM, Na-pyruvate 0.2 mM,
Penicillin 50 IU/ml, Streptomycin 50 μg/ml, NaHCO3

25 mM, Heparin 10 μg/ml for 18–24 h at 38.5 °C under
5% CO2 in humidified air overlaid with light mineral oil.
On the next day, to remove the cumulus cells, the

presumptive zygotes were vortexed in HTCM199 + FBS
for 3 min. Then, they were cultured for 3 days in glucose
and serum free modified synthetic oviductal fluid
(mSOF) [27]. After the third day, cleaved embryos were
transferred to mSOF in the presence of charcoal stripped
serum (5%) and glucose (1.5 mM) for 5 days at 39 °C,
6% CO2, 5% O2 in humidified air under oil. Day 0 was
defined as the day of fertilization. Therefore cleavage,
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blastocyst and hatching rates were determined on the
day 3, 7 and 8 post embryo cultures.

Vitrification and warming process
Vitrification–warming process was adopted from Martinez
et al. [28]. Briefly, blastocysts were washed for 1 min in
basic solution [BS: composed of phosphate buffer saline
(PBS) and 20% FBS]. Then, blastocysts were equilibrated in
equilibration solution (ES: 7.5% EG and7.5% DMSO in BS)
for 5 min. Finally, they were exposed to vitrification
solution (VS: 15% EG + 15% DMSO + 0.5 M sucrose) for
30 to 50 s and vitrified in minimal amount of vitrification
solution on cryotops (Cryologic; CVM™, Fibreplug &
Sleeve, Australia), which were quickly plunged into liquid
nitrogen (LN2).
For warming, the cryotops were removed from LN2

and immediately tipped to warming solution 1 for 1 min
(WS1: 1 M sucrose in BS) that was pre-equilibrated at
38.5 °C. Then, they were transferred for 3 min to warm-
ing solution 2 (WS2: 0.5 M sucrose in BS). Finally,
blastocysts were allowed to remain in BS for 5 min and
eventually co-cultured in mSOF in presence of charcoal
stripped serum (5%) and glucose (1.5 mM) for 18-24 h.
At this time, the percentages of re-expanded and
hatched blastocysts were determined. Then blastocysts
were used for evaluation of total cell number and DNA
fragmentation.

DNA-fragmentation
In Situ Cell Death Detection Kit (Promega Diagnostic
Corporation, Mannheim, Germany), known as TUNEL
(TdT-mediated dUTP-digoxigenin nick end labeling),
was used for detection of apoptotic cells in blastocysts
[10]. Hatched blastocysts were thoroughly washed in
PBS + 1 mg/ml polyvinyl alcohol (PVA). Then, they were
fixed in humid condition for 1 h at room temperature
using 4.0% paraformaldehyde (w/v) in PBS. Following
fixations, blastocysts were washed again in PBS/PVA
and permeabilized for 30 min at room temperature, in
0.5% (v/v) Triton X-100 and sodium citrate. Next, per-
meable blastocysts were incubated for 10 min at room
temperature in EQ buffer. Subsequently the blastocysts
were incubated at 37 °C for 1 h in the dark under humid
condition in TUNEL reaction mixture (equilibration buf-
fer, nucleotide mix, and rTdT enzyme). Then, the blasto-
cysts were allowed to remain in Buffer 2X for 15 min at
room temperature. Eventually, the blastocysts were
counterstained to label all nuclei with propidium iodide
(PI) for 15 min, washed extensively in PBS, mounted on
microscopic slides and observed under a fluorescence
microscope (Olympus, Tokyo, Japan). Total numbers of
nuclei were counted by PI. Cells were considered as
TUNEL positive if their nuclei showed light green fluor-
escence against the background of PI (Fig. 2c).

Differential staining
Differential staining was carried out according to
Moulavi et al. [29]. Briefly, day 8 hatched blastocysts
were washed in HTCM199 + 5 mg/ml BSA and perme-
abilized in 0.5% Triton X-100 in HTCM with 5 mg/mL
BSA for 30 s. Then, blastocysts were transferred to
30 μg/ml of propidium iodide in basic medium and
incubated for 10–20 s. Eventually, blastocysts were incu-
bated for 15 min to 10 μg/ml Hoechst (H33342) at 4 °C,
mounted in a drop of glycerol and observed under
fluorescence microscope (Olympus, Tokyo, Japan). Inner
cell mass (ICM) and trophectoderm (TE) numbers were
distinguished based on their blue and red colors,
respectively.

Real time-PCR
Total RNA of blastocyst with the aid of the Micro-
RNeasy kit (Qiagen, Canada) was extracted. For reverse
transcription, 10 μl of total RNA was used in a final vol-
ume of a 20 μl reaction that contained 1 μl of random
hexamer, 4 μl RT buffer (10×), 2 μl of dNTP, 1 μl of
RNase inhibitor (20 IU), and 1 μl of reverse transcriptase
(Fermentas, Canada). Reverse transcription was carried
out at 25 °C for 10 min, 42 °C for 1 h and 70 °C for
10 min. Moreover, real Time-PCR was implemented
using 1 μl of cDNA (50 ng), 5 μl of the SYBR Green
qPCR Master Mix (2X) (Fermentas, Germany) and 1 μl
of forward and reverse primers (5 pM) adjusted to a
total volume of 10 μl using nuclease-free water. Real
time PCR program was 1) 95 °C 4 min, 2) 94 °C 10 s, Ta
30 s, 72 °C 30 s, 40 cycles. To diminish the technical
errors, Real Time-PCR was repeated three times. The
transcripts abundance of BCL2 and BAX were normal-
ized to beta actin as reference gene (Table 1).

Statistical analysis
Data percentages were modeled to the binomial model
of parameters by ArcSin transformation. Blastocysts
rates, Real-time reverse transcription PCR data were
examined using a one-way ANOVA followed by Tukey’s
post hoc tests. For TUNEL staining, and differential
staining, t-test was used. The differences were consid-
ered significant at P < 0.05. All data were presented as
means ± S.E.M. and differences were considered as
significant at P < 0.05.

Results
Effect of E-64 treatment on in vitro embryo production
As shown in Fig. 1, in the first experiment to investigate
appropriate concentration of E-64, different concentra-
tions (0, 0.1, 1.0, and 10 μM) of E-64 were added to IVC
medium on day 3 in which embryos were cultured for
6 days. Addition of 1.0 μM E-64 from day 3 to 8 signifi-
cantly increased compaction rates compared to control
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(69.5 ± 2.9% vs. 37.25 ± 2.13%, respectively; P < 0.05).
The percentage of embryos that developed to the blasto-
cyst stage in 1.0 μM (24.75 ± 3.1%) was also significantly
higher than that of embryos cultured with 0.1, 10 μM
and control group (12.75 ± 2.4, 5.25 ± 0.9, 13.75 ± 1.1,
respectively; P < 0.05).
Hatching rates were 7.5 ± 1.29, 4.75 ± 2.06,

11.5 ± 2.88%, 1.25 ± 0.75 in 0.0, 0.1, 1.0 and 10.0 μM E-
64, respectively. Hatching rate was significantly higher in
1.0 μM compared to other groups (P < 0.05).
Moreover, for analysis of quality of hatched blasto-

cysts, differential staining of the blastocysts showed that
E-64 supplementation significantly affected total cell
number of blastocyst (183 ± 1.6 vs. 143.16 ± 1.6;
P < 0.05; Fig. 2a). Also inner cell mass (ICM) and troph-
ectoderm (TE) cell number in presence of 1.0 μM E-64
were significantly higher than the control group (ICM:
26.75 ± 1.84 vs. 45.4 ± 3.93; TE: 116.42 ± 3.11 vs.
137.52 ± 1.67; P < 0.05).
Furthermore, the rate of TUNEL-positive cells of

blastocyst derived from the E-64-treated group were sig-
nificantly lower than the control group (8.34 ± 0.4% vs.
21.4 ± 0.9%, P < 0.05, Fig. 2b).

Effect of E-64 on post-warming survival of vitrified
blastocysts
In vitro re-expansion and hatching rates of blastocyst
after vitrification/warming are shown in Fig. 3. In this

regard, the proportion of survived and also hatched vitri-
fied/warmed blastocysts in the experimental groups
(IVC+/PW+, IVC−/PW+, IVC+/PW−, IVC−/PW−) were
(33.9 ± 3.8% and 4.9 ± 3.2%), (54.2% ± 3.4 and
15.8 ± 6.1%), (89.7% ± 2.1% and 58.1 ± 1.7%), and
(72.1 ± 1.4% and 35.8 ± 2.6%) which were significantly
(P < 0.05) different between groups (Fig. 3).
Analysis of TCN of cryopreserved blastocysts indicated

significant differences between the two groups [IVC+/PW−

(147 ± 2) compared to IVC−/PW− (118 ± 1), Fig. 4a]. Also
ICM and TE cell number in the IVC+/PW− group was sig-
nificantly higher than the control group (ICM: 15.45 ± 1.0
vs. 29.76 ± 1.08; TE: 102.41 ± 2.65 vs. 117.28 ± 3.56;
P < 0.05).
Furthermore, TUNEL assessment of the cryopreserved

blastocysts clearly revealed a significant difference in the
percentage of TUNEL-positive cells between two groups
[IVC+/PW− (15.9 ± 0.6%) compared to IVC−/PW−

(35.7 ± 0.6%), Fig. 4b; P < 0.05].
Within E-64 supplemented groups, IVC+/PW− in-

duced the best cryo-protection.

Effect of E-64 on expression of apoptosis-related genes
before and after vitrification
Figure 5 shows that the expression of anti-apoptosis-
related gene, BCL2 was significantly higher in blastocysts
from E-64 treatment than the control (P < 0.05) while the
expression of pro-apoptotic gene, BAX was significantly

Table 1 Primer sequences

Gene symbol Forward primer (5′-3′) Reverse primer (5′-3′) Annealing temp. (°C)

BCL2 CCTTCTTTGAGTTCGGAG CCTTCAGAGACAGCCAG 61

BAX AGCGAGTGTCTGAAGCG CCCAGTTGAAGTTGCCGT 61

β-actin CCATCGGCAATGAGCGGT CGTGTTGGCGTAGAGGTC 59

Fig. 1 Effect of various concentrations of E-64 on developmental competence of ovine IVF embryos. Values in columns with different letters are
significantly different (P < 0.05). Uppercases and lowercases denote significance for compact morula and blastocyst rate, respectively
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less in blastocysts from E-64 treatment groups than in the
control (P < 0.05). Interestingly, after vitrification/
warming, expression of BCL2 significantly increased
in IVC+/PWˉ compared to IVC−/PW− (P < 0.05).
Conversely, expression of BAX in IVC+/PW− was sig-
nificantly lower than IVC−/PW− (P < 0.05, Fig. 6).

Discussion
Lysosomes are specialized intracellular organelles and
play indispensable role in many physiological functions
including: endocytosis, phagocytosis, and autophagy
[30–32]. In addition, in presence of exogenous stresses
such as altered pH and heat shock or suboptimal culture

Fig. 2 Effect of E-64 (1 μM) during embryo culture medium on a blastocyst total cell number and b percentage of DNA fragmentation assessed
by TUNEL assay. Mean values with asterisk denote significant difference at P < 0.05 compared to control. c TUNEL-positive cells that appeared in
yellow-green. Scale bar represents 50 μm

Fig. 3 Effect of E-64 supplementation during in vitro culture and/or post warming on re-expansion and hatching rates of blastocyst. Columns with
different letters are considered as significant (P < 0.05). Uppercases and lowercases denote significance for re-expansion and hatching rate,
respectively. IVC+ means embryos cultured in the presence of 1 μM E-64, while IVC− means embryo cultured in absence of E-64. PW+

and PW− refers to presence or absence of 1 μM E-64 after warming, respectively
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conditions [17], lysosomal cysteine proteases, like
cathepsin B, are released from lysosomes. Cathepsins
can induce apoptosis directly through initiator caspases
or indirectly via release of cytochromes from mitochon-
dria and eventually leads to completion of apoptosis via
activation of effector caspases [33].
Increased expression of cathepsin B is inversely corre-

lated with quality of cumulus-oocyte complexes (COCs)
in cattle [7]. Furthermore, expression of cathepsin B is
higher in poor quality bovine oocytes as compared to
good-quality ones [22]. In this regard, Balboula et al.
showed that addition of 1 μM E-64 during in vitro mat-
uration (IVM), improves quality of COCs and their
developmental competency. These authors also showed
that heat shock stress increases the expression of cathep-
sin B and its inhibition by E-64 reduces injuries due to
heat stress [34].
It has also been reported that E-64 treatment after IVF

followed by IVC for 6 days significantly improved devel-
opmental competences and increased number of good

quality bovine embryos [23]. On the other hand, Min et
al. (2014) reported that treatment during IVC with E-64
(0.1 and 0.5 μM) significantly improves developmental
rates without any noticeable effect on cleavage rate [24].
Unlike the former study which assessed role of cathepsin
B inhibition during IVM, other research groups showed
that addition of E-64 during in vitro culture (IVC) also
improves rate and quality of derived blastocysts [7, 22,
24, 34]. Both these studies concluded that addition of E-
64 to IVC medium has no effect on early cleavage rates.
Based on these result, we assessed the effect of E-64 post
maternal embryonic transition on quantity and quality
of ovine derived blastocysts. In agreement with previous
studies, this study also revealed that among assessed
concentrations, 1.0 μM E-64 significantly improves rates
of ovine embryo compaction and blastocyst formation.
In addition, we showed that rate of apoptosis, assessed
by TUNEL, was significantly reduced by treatment with
E-64. Since cathepsin B mediates its indirect effect
through mitochondria intrinsic pathway, we also

Fig. 4 Comparison of a total cell number and b percentage of nuclei with DNA fragmentation in blastocysts derived from IVC+/PW− and IVC−/PW−

groups. Mean values with asterisk denote significant difference at P < 0.05

Fig. 5 Effect of E-64 (1 μM) during in vitro culture on relative expression of BAX and BCL2, in ovine IVF blastocysts. Asterisks indicate statistically
significant differences from control (P < 0.05)
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assessed the relative expression of pro-apoptotic (BAX)
and anti-apoptosis (BCL2) related genes which play an
important role in regulating cell death by controlling re-
lease of cytochrome-c into cytosol [35]. As depicted in
Fig. 5, addition of E-64 increased expression of BCL2
and reduced expression of BAX, indicating that E-64 can
limit apoptosis induced by sub-optimal culture
conditions.
The second point highlighted in this study was the link

between developmental competence and vitrification in
ovine embryos. During vitrification, embryo exposure to
a highly-concentrated solution of cryo-protectants leads
to stress or injuries to membranes, cellular organelles
and release of cathepsin B from lysosomes [36–41].
Moreover, the sensitivity of embryos to cryopreserva-
tion is closely related to culture conditions [8, 9].
Therefore, in this study, we evaluated the effect of
addition of E-64 during day3 to day8 on cryosurvival
of derived blastocysts.
In results depicted in Fig. 3, addition of E-64 to culture

medium during embryonic development enhances the
overall re-expansion and cryo-viability of the blastocysts.
However, the difference for rate of blastocyst re-expansion
became significant when E-64 was added to IVC before
vitrification during day 3 to 7 (90% ± 2% IVC+/PW−)
compared to control (IVC−/PW−) or when E-64 was
added before and after vitrification (IVC+/PW+). These
data are consistent with the interpretation of positive ef-
fect of E-64 addition to IVC. It is very likely that addition
of E-64 leads to production of more competent embryos
with better cryosurvival potential, which was further
confirmed by assessment of percentage of apoptotic cells,
total cell number and expression of pro- and anti-
apoptotic genes. In contrast, the data indicate that
addition of E-64 post warming has a negative effect on the
rate of re-expansion. The rate of re-expansion is

significantly lower when E-64 was used after warming
(IVC−/PW+ or IVC+/PW+) compared to its absence before
and after vitrification (IVC−/PW−). This observation raises
the questions; could cathepsin B have a role in blastocyst
re-expansion or is this effect due to toxic effect of high
concentration of E-64? Indeed, it is know that permeabil-
ity of embryos is highly altered through cryopreservation.
Therefore, could the optimal concentration be toxic post
vitrification, as higher concentration of E-64 (10 μM)
reduced the developmental competency. Therefore,
further experiment and optimization is needed to define
the concentration of E-64 required after vitrification.
The overall improved effect observed by E-64 treat-

ment can be explained by direct and indirect mechanism
of action of cathepsin B. It is likely, exposure to cryo-
protectant or reactive oxygen species (ROS) produced
during cryopreservation, may directly activate Type II
class, initiator caspases. Alternatively, cryopreservation
may lead to release of cathepsin B from lysosomes and
induce mitochondrial membrane degradation, a condi-
tion known as permeability transition. This effect leads
to the release of pro-apoptotic factors into the cytosol.
In this regard, Balboula et al. has shown that heat stress
in oocytes leads to a defect in lysosomal membrane
permeability which results in lysosomal aggregation and
release of cathepsin B into the cytosol [34]. Kim et al.
evaluated localization of cathepsin B and cytochrome C in
presence of E-64 and showed co-localization of these fac-
tors in porcine embryos [25]. In both bovine and porcine
embryos, these observations were reversed by treatment
with E-64. E-64 decreases both the activity of caspase 3
and its mRNA while decreasing only the activity of ca-
thepsin B. It is also important to note that cathepsin B, on
its own, can also induce nuclear apoptosis independent of
caspase 3 [42, 43] and ablation of cathepsin B makes cells
more resistant to inflammation induced apoptosis [44].

Fig. 6 Effect of E-64 on in vitro culture and/or post warming on relative expression of BAX and BCL2, in ovine IVF blastocysts. Values in columns
with different letters are significantly different (P < 0.05)
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Similarly, rates of hatching were significantly reduced
by adding E-64 post warming, while its addition during
IVC significantly improved the hatching rate compared
to control (IVC−/PW−). It is noteworthy that blastocysts
hatch by their intrinsic ability to produce zonalytic
factor(s) that have cysteine protease-like activity. In this
regard, several proteases are expressed before hatching
[45, 46] and they play important role in this process
[47–53]. Therefore, it is likely that E-64 inhibits these
proteases involved in hatching and this may explain the
reduced rate of hatching by presence of E-64 post warm-
ing. Indeed, the rate of hatching was also reduced in all
concentration of E-64 during IVC compared to control,
except at 1 μM concentration. The improved higher
hatching rate at 1 μM E-64 is very likely related to in-
trinsic effect of E-64 to improve the quality of derived
blastocysts. The ability of E-64 to reduce hatching rate
also indicate that cathepsins are likely to be involved in
ovine blastocyst hatching.

Conclusion
In conclusion, results of this study indicated that supple-
mentation of IVC media with 1 μM E-64, an exogenous
inhibitors of Cathepsins, improves quality and quantity
of blastocyst formation. Furthermore, addition of E-64
during IVC also improve rate of re-expansion and hatch-
ing post vitrification. However, addition of 1 μM E-64 to
media post vitrification/warming has a negative effect on
embryo re-expansion and hatching rates. This effect may
be related to toxic concentration of E-64 which is likely
to be related to altered membrane permeability post
vitrification. Moreover, negative effect of E-64 after
warming can be related to incomplete blastocyst
hatching because of interference in secretion of zonalytic
proteases which requires further investigation.
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